Руководство по ремонту

Дисковые тормозные механизмы с пневмоприводом

SN5…

KNORR-BREMSE
Systeme für Nutzfahrzeuge GmbH
Содержание
1 Перечень конструктивных элементов ... 4
1.1 Конструктивные элементы дискового тормозного механизма .. 4
1.2 Обозначения тормозных механизмов и ремонтные комплекты для дисковых тормозов .. 5
1.3 Тормозные диски .. 6
2 Общие сведения ... 7
2.1 Монтажный инструмент .. 7
2.2 Диагностический прибор .. 7
2.3 Смазочные материалы ... 7
2.4 Моменты затяжки резьбовых соединений .. 7
3 Устройство и работа .. 8
3.1 Разрез дискового тормозного механизма .. 8
3.2 Работа ... 9
3.2.1 Торможение ... 9
3.2.2 Растормаживание ... 9
3.2.3 Механизм автоматической регулировки зазора между диском и тормозными колодками .. 9
4 Контрольные точки и периодичность проверок .. 10
4.1 Техника безопасности при сервисных и ремонтных работах 11
5 Проверка функционирования и визуальный контроль .. 12
5.1 Проверка степени износа фрикционных накладок и тормозных дисков 12
5.1.1 Проверка износа фрикционной накладки при установленном тормозном механизме ... 14
5.1.2 Индикация / сигнализация износа ... 15
5.1.3 Диагностический прибор ZB 9031-2 ... 15
5.2 Проверка механизма автоматической регулировки зазора .. 16
5.3 Проверка подвижной скобы .. 18
5.3.1 Проверка перемещения подвижной скобы .. 18
5.3.2 Проверка направляющих втулок скобы .. 18
5.3.3 Проверка зазора между направляющей гильзой (6) и втулкой 18
5.4 Проверка уплотнений .. 19
5.4.1 Уплотнения направляющих элементов подвижной скобы .. 19
5.4.2 Проверка гофрированного пыльника упора (13) ... 19
6 Замена тормозных колодок ... 20
6.1 Снятие тормозных колодок ... 20
6.2 Установка тормозных колодок .. 21
7 Замена упоров с гофрированными пыльниками (13) .. 23
7.1 Снятие упоров с гофрированными пыльниками (13) ... 23
7.1.1 Проверка резьбы устройства автоматической регулировки зазора 24
7.2 Установка на место упора с гофрированным пыльником (13) ... 24
Примечание
Данное Руководство по ремонту предназначено исключительно для тех, кто эксплуатирует грузовые автомобили и работников автосервисов, имеющих соответствующую профессиональную подготовку; оно не может передаваться третьей стороне.

Настоящее Руководство предназначено для помощи клиенту при сервисном обслуживании тормозных механизмов. Knorr-Bremse SFN не несет ответственности за последствия применения неоригинальных комплектующих. Мы не даем никакой гарантии относительно правильности, полноты или актуальности предоставленных сведений. Сведения, содержащиеся в данном руководстве, не являются гарантиями с точки зрения Гражданского кодекса Германии, и не могут рассматриваться как такие.

На основании содержания данного документа не могут быть предъявлены какие-либо претензии к приведенной информации и рекомендациям. Ответственность за убытки полностью исключена, если только они не являются результатом намеренных действий или грубой небрежности или не противоречат прочим обязательным требованиям закона.

Упомянутые в данном руководстве торговые марки не указаны в каждом случае как такие. Мы указываем только те из них, которые подчинены закону о защите торговых марок.

Составленные нами текстовые и графические материалы подчиняются нашему праву пользования и владения и могут быть размножены или распространены только с нашего согласия.

При возникновении разногласий юридического характера по поводу содержания данного руководства, эти разногласия должны рассматриваться исключительно в соответствии с законодательством Германии.

Если отдельные пункты данного Заявления об ограничении ответственности не соответствуют или более не соответствуют требованиям законодательства, то остальные пункты остаются при этом в силе.
1 Перечень конструктивных элементов

1.1 Конструктивные элементы дискового тормозного механизма

1 – Подвижная скоба
2 – Суппорт
4 – Направляющая втулка
5 – Направляющая втулка
6 – Направляющая гильза
7 – Латунная втулка
9 – Гофрированный пыльник
10 – Крышка
11 – Зажимная скоба тормозной колодки
12 – Тормозная колодка (в сборе)
12/1 – Фрикционная накладка тормозной колодки
12/2 – Удерживающая пружина тормозной колодки
13 – Упор с гофрированным пыльником
18/1 – Комбинированный тормозной цилиндр
18/2 – Тормозная камера (мембранного типа)
26 – Пружинный шплинт
37 – Заглушка
39 – Винт с цилиндрической головкой
40 – Винт с цилиндрической головкой
44 – Палец
45 – Шайба
58 – Обойма
61 – Переходник
161 – Втулка, работающая без смазки
При ремонте тормозных механизмов применяются следующие комплекты запасных частей:

<table>
<thead>
<tr>
<th>Наименование</th>
<th>Комплектация (номера позиций)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Суппорт</td>
<td>2</td>
</tr>
<tr>
<td>Комплект направляющих и уплотнительных элементов</td>
<td>4, 5, 6, 7, 9 (2 шт), 10 (2 шт), 39, 40, 58 (2 шт)</td>
</tr>
<tr>
<td>Упор с гофрированным пыльником и втулкой</td>
<td>13, 161</td>
</tr>
<tr>
<td>Комплект крышек регулятора и переходников</td>
<td>37 (10 шт), 61 (10 шт)</td>
</tr>
<tr>
<td>Комплект тормозных колодок (на одну ось)</td>
<td>12, 26, 37, 44, 45</td>
</tr>
<tr>
<td>Комплект элементов крепления тормозных колодок (на одну ось)</td>
<td>11, 26, 44, 45</td>
</tr>
<tr>
<td>Установочный комплект</td>
<td>Дисковый тормозной механизм без суппорта (2) и тормозных колодок (12), с набором направляющих и уплотнительных элементов для крепления к имеющемуся суппорту Knorr-Bremse предлагает установочные комплекты почти для всех существующих тормозных механизмов.</td>
</tr>
</tbody>
</table>

1.3 Тормозные диски
Замена тормозных дисков производится согласно инструкциям изготовителя соответствующего транспортного средства.
Этим инструкциям подчиняются и тормозные диски Knorr-Bremse, поставляемые в качестве запасных частей. Применение тормозных дисков, не допущенных к эксплуатации, запрещено из соображений безопасности и преследуется по закону.
При замене тормозных дисков обращайте внимание на применение соответствующих резьбовых элементов и соблюдение предусмотренных моментов их затяжки.
Тормозные диски Knorr-Bremse поставляются через дилерскую сеть.
2 Общие сведения

2.1 Монтажный инструмент

<table>
<thead>
<tr>
<th>№ для заказа</th>
<th>Наименование</th>
</tr>
</thead>
<tbody>
<tr>
<td>K002252</td>
<td>Приспособление для запрессовки упора с гофрированным пыльником (13)</td>
</tr>
<tr>
<td>K002254</td>
<td>Приспособление для установки внутреннего гофрированного пыльника (9) (направляющей подвижной скобы)</td>
</tr>
<tr>
<td>K002256</td>
<td>Приспособление для установки/снятия латунной втулки (7) (направляющей подвижной скобы)</td>
</tr>
<tr>
<td>K002255</td>
<td>Приспособление для установки крышек (10)</td>
</tr>
<tr>
<td>K002253</td>
<td>Приспособление для заменкивания латунной втулки (7)</td>
</tr>
</tbody>
</table>

Указанные выше приспособления, кроме вильчатого съемника (№ II32202) для поз. 13, а также настоящее Руководство по ремонту входят в инструментальный ящик K004789. Вильчатый съемник можно заказать отдельно. Также он входит в состав инструментальных ящиков SN6/7 или SB6/7.

2.2 Диагностический прибор

<table>
<thead>
<tr>
<th>№ заказа</th>
<th>Наименование</th>
</tr>
</thead>
<tbody>
<tr>
<td>II 40598F</td>
<td>Переносный диагностический прибор ZB 9031-2 Knorr-Bremse служит для проверки функционирования потенциометра (а также проверки исправности системы сигнализации предельного износа накладок и дисков, если на шасси установлен 13-ти контактный разъем). ZB 9031-2 – новая модель прибора, взамен ZB 9031</td>
</tr>
</tbody>
</table>

2.3 Смазочные материалы

<table>
<thead>
<tr>
<th>№ заказа</th>
<th>Цвет</th>
<th>Количество, г</th>
</tr>
</thead>
<tbody>
<tr>
<td>II14525</td>
<td>Белый</td>
<td>5</td>
</tr>
<tr>
<td>II32868</td>
<td>Белый</td>
<td>500</td>
</tr>
</tbody>
</table>

2.4 Моменты затяжки резьбовых соединений

<table>
<thead>
<tr>
<th>№ поз.</th>
<th>Наименование</th>
<th>Момент затяжки [Нм]</th>
<th>Размер ключа (SW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>39; 40</td>
<td>Направляющие подвижной скобы. 2 винта с цилиндрическим головками и шестигранными углублениями под ключ М16х1,5</td>
<td>180 плос дотяжка на 90°</td>
<td>14</td>
</tr>
<tr>
<td></td>
<td>Мембранная тормозная камера, комбинированный тормозной цилиндр. Две шестигранные гайки М16х1,5 (самоконтрящиеся) EN ISO 10513</td>
<td>180°-30</td>
<td>24</td>
</tr>
</tbody>
</table>
3 Устройство и работа

3.1 Разрез дискового тормозного механизма

1 – Подвижная скоба
2 – Суппорт
4 – Направляющая втулка
5 – Направляющая втулка
6 – Направляющая гильза
7 – Латунная втулка
9 – Гофрированный пыльник
10 – Крышка
11 – Зажимная скоба тормозной колодки
12 – Тормозная колодка (в сборе)
13 – Упор с гофрированным пыльником
16 – Резьбовая втулка
17 – Толкатель
18/1 – Комбинированный тормозной цилиндр
18/2 – Тормозная камера (мембранный тип)
19 – Рычаг
20 – Роликовый подшипник
21 – Внутренняя крышка
22 – Внутреннее уплотнение
23 – Регулятор
24 – Поводок
26 – Пружинный шплинт
27 – Пружина
30 – Роликовая цепь
32 – Звездочка цепи
33 – Датчик износа
37 – Заглушка
39 – Винт с цилиндрической головкой (внутренний шестигранник)
40 – Винт с цилиндрической головкой (внутренний шестигранник)
41 – Основание
42 – Болт с внутренним шестигранником
44 – Палец
45 – Шайба
46 – Тормозной диск
58 – Обойма
61 – Переходник
161 – Втулка, работающая без смазки
3.2 Работа
Принцип работы: тормозной механизм с подвижной скобой.

3.2.1 Торможение
При торможении шток поршня комбинированного тормозного цилиндра или тормозной мембранной камеры (18/1 или 18/2) давит на рычаг (19).
Рычаг поворачивается в роликовом подшипнике (20) и передает усилие на толкатель (17). Усилие сжатия действует через резьбовые втулки (16) и упоры (13) на внутреннюю тормозную колодку (12).
После выборки зазора между фрикционной накладкой колодки (12) и тормозным диском (46) сила реакции через подвижную скобу (1) передается на внешнюю тормозную колодку (12).
Усилие сжатия тормозных колодок (12) воздействует на тормозной диск (46) и на колесе возникает тормозной момент.

3.2.2 Растормаживание
При снятии тормозного давления, под действием пружины (27) толкатель (17), резьбовые втулки (16) и рычаг (19) возвращаются в исходное положение.

3.2.3 Механизм автоматической регулировки зазора между дисков и тормозными колодками
Для поддержания постоянного зазора между фрикционными накладками колодок и диском тормозной механизм оснащен устройством автоматической компенсации износа тормозных колодок.
При каждом срабатывании тормозного механизма одновременно происходит срабатывание регулятора (23), связанного с рычагом (19). При увеличении зазора вследствие изнашивания фрикционных накладок и тормозного диска резьбовая втулка (16) посредством регулятора (23) и поводка (24) проворачивается на величину, соответствующую износу. Полная величина зазора (сумма зазоров с обеих сторон тормозного диска) составляет от 0,6 до 1,1 мм.
Недостаточный зазор может привести к перегреву диска и колодок.
4 Контрольные точки и периодичность проверок

Несмотря на применение долговечных материалов, необходимо регулярно проверять общее состояние некоторых компонентов. Ниже указаны контрольные точки дискового тормозного механизма, проверка которых необходима для обеспечения продолжительной и безотказной работы. В инструкциях приведены средние значения. В зависимости от условий эксплуатации могут потребоваться более частые проверки тормозных механизмов.

Степень износа фрикционных накладок тормозных колодок следует визуально проверять регулярно (например, при проверке давления в шинах), но не реже одного раза в три месяца (см. пп. 5.1.1, 5.1.2).

Не реже одного раза в год, – например, в рамках государственного техосмотра, следует проверять подвижность скобы в пределах воздушного зазора (см. п. 5.3.1), а также наличие крышек (10) и заглушек (37).

При каждой замене колодок следует проверять упор с гофрированным пыльником (13), функционирование редуктора (см. п. 5.2), подвижность скобы во всем диапазоне перемещения (см. п. 5.3.2), заглушку (37), крышки (10), уплотнеия (9, 58) и направляющую скобу в месте сопряжения с гильзой (6) на отсутствие люфта и повреждений (см. п. 5.3.3).

Тормозные диски следует проверять в соответствии с указаниями изготовителя мостов и/или транспортных средств.

Для объективного выявления причин неисправности в случае рекламаций следует предоставлять все поврежденные детали, например, накладки (12/1), удерживающие пружины (12/2).
4.1 Техника безопасности при сервисных и ремонтных работах
При сервисно-ремонтных работах на грузовых транспортных средствах соблюдайте необходимые правила техники безопасности, в особенности меры предосторожности при подъеме автомобиля домкратом и его фиксировании в поднятом положении.
Применяйте только оригинальные комплектующие Knorr-Bremse.

ВНИМАНИЕ!
Перед началом работ необходимо зафиксировать транспортное средство во избежание его самопроизвольного перемещения!
Рабочая и стояночная тормозные системы должны находиться в свободном состоянии.

Строго соблюдайте все указания по ремонту, следите за степенью износа фрикционных накладок и тормозных дисков (см. п. 5.1).
Используйте только рекомендованные приспособления (см. п. 2.1).
При затяжке резьбовых соединений контролируйте предписанные моменты затяжки (см. п. 2.4).

ВНИМАНИЕ!
На резьбе винтов и отверстий под них не должно быть остатков смазочных материалов, средств для облегчения отвертывания и контрящих составов.

При монтаже колес на транспортное средство убедитесь, что между штуцером шины и скобой тормозного механизма имеется достаточный зазор. В противном случае возможно повреждение штуцера.

ВНИМАНИЕ!
После выполнения любых работ с дисковой тормозной системой выполните окончательную проверку ее функционирования и эффективности торможения на стенде с беговыми барабанами.
5 Проверка функционирования и визуальный контроль

5.1 Проверка степени износа фрикционных накладок и тормозных дисков

ВНИМАНИЕ!
Для обеспечения максимальной безопасности следует выдерживать размеры фрикционных накладок и тормозных дисков в пределах заданных пределов износа.

Фрикционные накладки
Толщину фрикционных накладок следует проверять в зависимости от интенсивности использования транспортного средства и в соответствии с требованиями закона, однако не реже одного раза в три месяца (если не предусмотрены датчики предельного износа фрикционных накладок).

Если толщина фрикционной накладки хотя бы в одном месте составляет менее 2 мм (см. рис. 3, размер Е), то тормозная колодка подлежит замене.

Значительное выкрашивание материала на рабочей поверхности накладки не допускается (см. рис. 2, указано стрелкой).

Тормозные диски
Замерьте толщину тормозного диска в самом тонком месте (учитывайте увеличение толщины на кромке диска).

\[A = \text{Полная толщина тормозного диска.} \]

\[C_1 = \text{Полная толщина новой тормозной колодки 27 мм} \]

\[C_2 = \text{Полная толщина новой тормозной колодки 34 мм} \]

\[D_1 = \text{Толщина основания тормозной колодки 8 мм} \]

\[D_2 = \text{Толщина основания тормозной колодки 15 мм} \]

\[E = \text{Минимальная толщина фрикционной накладки 2 мм} \]

\[F_1 = \text{Минимальная толщина тормозной колодки, включая толщину основания – 10 мм; тормозная колодка подлежит замене} \]

\[F_2 = \text{Минимальная толщина тормозной колодки, включая толщину основания – 17 мм; тормозная колодка подлежит замене} \]

Если размер \(A \leq 30 \text{ мм} \), то одновременно с заменой колодок следует заменить и тормозной диск.

Эксплуатация транспортного средства с толщиной тормозного диска \(A \) менее 28 мм не допускается.

ВНИМАНИЕ!
Невыполнение приведенных рекомендаций может стать причиной аварии.
При каждой замене тормозных колодок проверяйте тормозные диски на наличие повреждений и царапин.

На рисунке показаны допустимые размеры повреждений поверхности тормозного диска.

- A₁ = наличие мелких рисок **допускается**
- B₁ = наличие повреждений размером до 1,5 мм (ширина и глубина), направленных к центру диска, **допускается**
- C₁ = продольные риски на поверхности тормозного диска глубиной до 1,5 мм **допускаются**
- D₁ = сплошные повреждения, направленные к центру диска **не допускаются**, диск подлежит замене
- a = ширина фрикционной поверхности диска

В случае повреждений тормозные диски подлежат обязательной замене.

Примечание.

Если при проверке поверхности диска выполняются условия A₁...C₁, то диски можно эксплуатировать до достижения минимально допустимого размера A = 28 мм.

При нормальной эксплуатации тормозные диски Knorr-Bremse не нуждаются в обслуживании, т.е. проточка их поверхности при замене тормозных колодок не требуется. Проточка представляется целесообразной лишь в некоторых исключительных случаях – для увеличения рабочей поверхности фрикционной накладки в процессе приработки, например, при наличии многочисленных царапин на рабочей поверхности тормозного диска. Минимальная толщина диска после проточки должна быть более 30 мм.

Однако, следует учитывать требования, которые предъявляют некоторые изготовители транспортных средств относительно проточки тормозных дисков.

ВНИМАНИЕ!

Несоблюдение данных указаний влечет за собой опасность возникновения аварии!

При изношенных накладках тормозных колодок и/или слишком сильно изношенных тормозных дисках тормозное усилие снижается или даже может исчезнуть полностью.
5.1.1 Проверка износа фрикционной накладки при установленном тормозном механизме:
на подвижных скобах всех дисковых тормозных механизмов нанесена маркировка.

По положению точки маркировки на подвижной скобе (P) относительно неподвижного фланца суппорта (R) можно определить толщину тормозной колодки без снятия колеса. Если положение метки соответствует показанному на рисунке D, то следует проверить толщину фрикционных накладок и тормозного диска при демонтированных колесах.

При необходимости, следует заменить тормозные колодки (см. п. 6) и/или тормозной диск в соответствии с указаниями изготовителя транспортного средства.

C = Состояние новых комплектующих
D = Требуется проверка тормозных колодок и тормозных дисков при демонтированных колесах
5.1.2 Индикация / сигнализация износа
Предусмотрен специальный датчик - потенциометр для определения степени износа колодок и диска. Возможен также вариант с датчиком предельного износа имеющий дискретный сигнал (вкл./выкл.). К датчику возможно подключение оптического диагностического прибора или акустической системы сигнализации.
Примечание.
Руководствуйтесь требованиями изготовителя соответствующего транспортного средства.

5.1.3 Диагностический прибор ZB 9031-2
Диагностический прибор является переносным устройством. Он предназначен для определения степени износа тормозных колодок и дисков на транспортных средствах, оборудованных дисковыми тормозами KNORR-BREMSE с постоянно действующими потенциометрическими датчиками износа.
Для определения степени износа прибор подключается к 13-ти контактному разъему транспортного средства, соответствующему DIN 72570.
Диагностический прибор позволяет провести:
- быстрый и простой контроль толщины фрикционных накладок и диска;
- проверку работы потенциометра;
- возможен одновременный контроль до шести тормозных механизмов без демонтажа колес.

К диагностическому прибору прилагается подробное Руководство по эксплуатации.
5.2 Проверка механизма автоматической регулировки зазора

ВНИМАНИЕ!
Перед началом работ необходимо зафиксировать транспортное средство во избежание его самопроизвольного перемещения!
Рабочая и стояночная тормозные системы должны находиться в свободном состоянии.

Снять колесо.
Снять подвижную скобу по ее направляющим пальцам в направлении внешней стороны транспортного средства.
Походящим инструментом отжать внешнюю тормозную колодку в направлении упора (13).
Замерить зазор между основанием тормозной колодки и внутренней стороной скобы. Он должен находиться в пределах от 0,6 до 1,1 мм.

ВНИМАНИЕ!
При увеличенном зазоре эффективность торможения может снизиться. При уменьшенном зазоре возможен перегрев и последующее повреждение тормозного механизма.
Если зазор слишком мал или слишком велик, это может свидетельствовать о неправильной работе регулятора. Последний проверяется следующим образом.
Снять заглушку (37) за язычок (не потеряйте переходник (61)).
Регулятор (23) через переходник (61) провернуть на 2…3 щелчка против часовой стрелки (увеличение зазора).

ВНИМАНИЕ!
Ни в коем случае не проворачивайте регулятор (23) непосредственно, без переходника (61). При превышении допустимого момента переходник (61) разрушается. В этом случае повторите попытку еще раз с новым (неиспользованным) переходником (61). При повторном разрушении следует заменить подвижную скобу в сборе, поскольку в этом случае имеются внутренние дефекты. Допускается пользоваться только накидным или торцевым ключом, в противном случае переходник может быть поврежден.

ВНИМАНИЕ!
Перед выполнением следующих операций убедитесь, что ничего не мешает перемещению торцевого или накидного ключа в направлении по часовой стрелке.
Нажать на педаль тормоза 5…10 раз (давление в системе около 2 бар).
Если механизм автоматической регулировки зазора исправен, то ключ будет рывками перемещаться по часовой стрелке.
См. примечание ниже.

Примечание
При каждом последующем нажатии на педаль угол, на который поворачивается ключ, будет уменьшаться.
Примечание:
Если ключ не поворачивается вообще или поворачивается только при первом нажатии на педаль тормоза, либо при каждом нажатии на педаль ключ поворачивается вперед, а затем вновь возвращается обратно, то система автоматической регулировки зазора неисправна и подвижная скоба тормозного механизма подлежит замене.

Примечание:
Даже если во время ремонта замена тормозных колодок не производилась, заглушку (37) следует заменить новой.
Перед установкой заглушки на ее посадочное место нанести белую консистентную смазку (номер заказа И14525 или И132868).

Примечание:
При установке следите за правильностью положения заглушки (37) (указан стрелкой на рисунке). В противном случае после установки тормозного цилиндра доступ к язычку заглушки (37) будет перекрыт. В этом случае демонтаж заглушки (37) с помощью подручных средств может стать причиной повреждения уплотнения и регулятора.
5.3 Проверка подвижной скобы

5.3.1 Проверка перемещения подвижной скобы

ВНИМАНИЕ!
Перед началом работ необходимо зафиксировать транспортное средство во избежание его самопроизвольного перемещения!
Рабочая и стояночная тормозные системы должны находиться в свободном состоянии.

Перемещаю скобу от руки в осевом направлении (показано стрелкой), убедитесь, что ход составляет 0,6…1,1 мм. Для этого требуется приложить достаточно большое усилие.
Если перемещение составляет больше или меньше 0,6…1,1 мм или если скоба не перемещается, то необходимо тщательно проверить направляющие элементы скобы (см. п. 5.3.2).

5.3.2 Проверка направляющих втулок скобы

Снять тормозные колодки (см. п. 6.1).
Полностью вывернуть упор (13) регулятора (23), вращая переходник (61) (см. п. 5.2).
Скоба (1) должна перемещаться от руки (без применения инструмента) на всю длину хода > 20 мм по направляющим втулкам (5), (7) и (4).

5.3.3 Проверка зазора между направляющей гильзой (6) и втулкой

Примечание:
Перед снятием колеса убедитесь в отсутствии какого-либо контакта скобы или суппорта с элементами моста и ходовой части транспортного средства. При необходимости заменить направляющие гильзы (6) (см. п. 10.2).
Порядок замера зазора:
Демонтировать колесо, руководствуясь инструкциями изготовителя транспортного средства.
Снять зажимную скобу тормозной колодки (11) (см. п. 6.1), оставив колодку (12) в подвижной скобе.
Закрепить магнитное основание индикатора часового типа на суппорте (2) в зоне короткой втулки (см. верхний рисунок).
В качестве точки измерения служит литой выступ на подвижной скобе (1) – указан стрелкой на нижнем рисунке.
Поджать подвижную скобу (1) в направлении суппорта (2) и выставить индикатор часового типа в нуль.
Вставить соответствующий инструмент (например, отвертку) между подвижной скобой (1) и суппортом (2) и отжать скобу от суппорта.
Определить по индикатору значение максимального зазора.
Если измеренный зазор больше 1,0 мм, то направляющая гильза (6) подлежит замене. Новая втулка входит в ремонтный комплект (см. п. 1.2 и п. 8).

Помните, что не должно быть какого-либо контакта деталей тормозного механизма с элементами моста и подвески транспортного средства. В противном случае заменить направляющие элементы подвижной скобы на таковые из ремонтного комплекта (см. п. 1.2 и п. 8).

Установить на место зажимную скобу тормозной колодки, отрегулировать зазор (см. п. 6.2).

Установить колесо. При этом руководствоваться инструкциями изготовителя соответствующего транспортного средства.

5.4 Проверка уплотнений
5.4.1 Уплотнения направляющих элементов подвижной скобы

Направляющие втулки (4) и (5) герметизируются гофрированными пыльниками (9) и крышками (10).

Детали (9) и (10) не должны иметь каких-либо царапин и повреждений.

Проверить правильность установки деталей.

При необходимости, снять тормозные колодки для проверки состояния гофрированных пыльников (см. п. 6.1).

При необходимости, отремонтировать подвижную скобу, используя детали из ремонтного комплекта (см. п. 1.2 и п. 8).

5.4.2 Проверка гофрированного пыльника упора (13)

При необходимости снять тормозные колодки (12) (см. п. 6.1).

Для того чтобы выдвинуть упор (13), вращайте регулятор (23) за переходник (61) по часовой стрелке до тех пор, пока не станет виден гофрированный пыльник.

Примечание:
Максимальный ход упора (13) составляет 40 мм.

Гофрированный пыльник упора (13) не должен иметь каких-либо порезов и повреждений.

Проверить качество установки пыльника.

Примечание:
Попадание смазки и влаги во внутреннюю часть тормозного механизма вызывает коррозию и приводит к нарушению функционирования систем передачи тормозного усилия и автоматической регулировки зазора.

При необходимости заменить упор (13) вместе с гофрированным пыльником (см. п. 7).
6 Замена тормозных колодок

ВНИМАНИЕ!
Перед началом работ необходимо зафиксировать транспортное средство во избежание его само-
произвольного перемещения!
Рабочая и стояночная тормозные системы
dолжны находиться в свободном состоянии.

6.1 Снятие тормозных колодок

Снять колеса, руководствуясь инструкциями изготовителя соответствующего транспортного средства.

ВНИМАНИЕ!
Перед снятием тормозных колодок настоятельно рекомендуется проверить регулятор (см. п. 5.2).
Вынуть пружинный шплинт (26), снять шайбу (45). Отжать зажимную скобу (11) при помощи отвертки и вынуть палец (44).
Проверить отсутствие повреждений зажимной скобы (11) и, при необходимости, заменить.
Снять за язычок заглушку (37).

Примечание.
Снятие заглушки (37) с помощью какого-либо инструмента может стать причиной повреждений уплотнений и регуля-
тора (23).
Через переходник (61) поверните регулятор (23) против часовой стрелки до тех пор, пока не появится возмож-
ность вынуть тормозную колодку (12) (при достижении момента проворачивания предохранительная муфта в ре-
гуляторе издаст щелчок).

ВНИМАНИЕ!
Ни в коем случае не проворачивайте регулятор (23) непосредственно, без переходника (61). При
превышении допустимого момента переходник (61) разрушается. В этом случае повторите попыт-
ку еще раз с новым (неиспользованным) переходником (61). При повторном разрушении следует
заменить подвижную скобу в сборе, поскольку в этом случае имеют место внутренние дефекты.

Допускается пользоваться только накидным или торцевым ключом, в противном случае переходник может быть по-
врежден.
Выступы внутренней тормозной колодки перемещаются в направляющих канавках суппорта (2) – см. рисунок справа.
Поджать подвижную скобу в направлении тормозного ци-
лindera (в направлении стрелки на рисунке).
Внутреннюю тормозную колодку (12) переместить в на-
правлении тормозного цилиндра до тех пор, пока она не
освободится и ее можно будет извлечь из направляющих
канавок суппорта (2).
После этого можно вынуть внутреннюю тормозную колод-
ку (12).

Примечание:
Внутреннюю тормозную колодку можно вынуть только после извлечения внешней тормозной колодки.
6.2 Установка тормозных колодок

ВНИМАНИЕ!
Допускается одновременно заменять только все тормозные колодки одного моста.
Применяйте только тормозные колодки, допущенные к применению изготовителем транспортного средства, моста или тормозной системы. В противном случае, эксплуатация транспортного средства не допускается.

Примечание:
Перед установкой тормозных накладок следует полностью ввернуть упор (13), вращая против часовой стрелки регулятор (23) за переходник (61) (см. п. 5.2).

Очистить место установки тормозных колодок.
Сдвинуть подвижную скобу (1) в направлении тормозного цилиндра – см. рис. вверху.
Установить внутреннюю тормозную колодку. При этом направляющие выступы колодки должны попасть в направляющие канавки суппорта (2) – см. верхний рисунок.
Проверить перемещение внутренней тормозной колодки (12) в направляющих канавках суппорта (2) – см. верхний рисунок.
Затем отжать подвижную скобу в направлении внешней стороны транспортного средства и установить внешнюю тормозную колодку (12) – см. средний рисунок.
Регулятор (23) вращать по часовой стрелке до касания тормозной колодки о тормозной диск. Не перетягивать регулятор (23). Затем отвернуть его на два щелчка обратно и проверить зазор (см. п. 5.2).

ВНИМАНИЕ!
При увеличенном зазоре может снизиться эффективность торможения. При уменьшенном зазоре возможен перегрев и последующее повреждение тормозного механизма.

После опробования тормозов провернуть ступицу колеса вручную.
Вставить зажимную скобу тормозной колодки (11) в углубление подвижной скобы, затем прижать ее вниз и установить палец (44).
На палец надеть шайбу (44) и пружинный шплинт (26) (применять только новые детали).
Мы рекомендуем устанавливать палец таким образом, чтобы шайба (44) и пружинный шплинт (26) находились внизу – см. нижний рисунок.
Установить заглушку (37). Предварительно место установки заглушки (37) смазать белой смазкой (номер заказа II14525 или II32868).

Примечание:
При установке следите за правильностью положения заглушки (37) (указан стрелкой на рисунке). В противном случае после установки тормозного цилиндра доступ к язычку заглушки (37) будет перекрыт. В этом случае демонтаж заглушки (37) с помощью подручных средств может стать причиной повреждения уплотнения и регулятора.
Установить на место колеса. При этом следует руководствоваться инструкциями изготовителя транспортного средства.

ВНИМАНИЕ!
После проведения любых работ с тормозной системой выполняйте окончательную проверку ее функционирования и эффективности на стенде с беговыми барабанами.
Во время приработки новых тормозных колодок избегайте резких торможений.
7 Замена упоров с гофрированными пыльниками (13)

Для облегчения операций сборки-разборки, каждое приспособление имеет свой идентификационный номер.
Для демонтажа упоров с гофрированными пыльниками (13) пользуйтесь вильчатым съемником (A) (№ заказа L32202).
При монтаже упоров с гофрированными пыльниками (13) применайте приспособление для запрессовки (B) (№ заказа K002252).

7.1 Снятие упоров с гофрированными пыльниками (13)

Примечание:
Замена упора (13) может осуществляться как при установленной, так и при снятой подвижной скобе (см. п. 8.1).
Выдвинуть упор (13) вращая переходник (61) регулятора (23) по часовой стрелке (с учетом требований п. 7.1.1) до тех пор, пока не будет обеспечен доступ к гофрированному пыльнику (максимум на 40 мм).
Поддеть отверткой гофрированный пыльник.

ВНИМАНИЕ!
Будьте осторожны, не повредите посадочное место пыльника на подвижной скобе (указано стрелкой Х на рисунке справа), а также внутреннее уплотнение (22), поскольку замена этих деталей невозможна.

Вильчатым съемником (A) (№ заказа L32202) снять упор (13) с торцевого выступа резьбовой втулки.
Снять старую втулку, работающую без смазки (161).
Проверить состояние посадочного места пыльника (указано стрелкой Х), а также внутреннего уплотнения (22).
При наличии повреждений посадочного места пыльника (указан стрелкой Х), и/или внутреннего уплотнения (22), требуется замена подвижной скобы (см. п. 8).
7.1.1 Проверка резьбы устройства автоматической регулировки зазора
Установить с внешней стороны подвижной скобы новую тормозную колодку (12), чтобы предотвратить возможность полного вворачивания резьбовой втулки из толкателя.

ВНИМАНИЕ!
Резьбовые втулки (16) не вывинчивать полностью из толкателя, поскольку в противном случае будет нарушенна настройка потенциометра и придется менять всю подвижную скобу в сборе.

Вывинтить резьбовую втулку (16), вращая переходник (61) регулятора по часовой стрелке до момента касания упора тормозного диска (46) (максимальный ход – 40 мм).

В случае, если подвижная скоба снята и находится на верстаке, при вывинчивании резьбовой втулки (16) следует установить внутрь подвижной скобы проставку (E) толщиной 60 мм таким образом, чтобы предотвратить полное вывинчивание втулки (16) (см. рисунок справа).

После этого проверьте состояние резьбы резьбовой втулки (16) на предмет коррозии и повреждений.

Если будет установлено наличие ржавчины вследствие попадания воды, то подвижная скоба подлежит замене (см. п. 8.)

7.2 Установка на место упора с гофрированным пыльником (13)
При установленной на место подвижной скобе:

Нанести на резьбу втулки (16) белую консистентную смазку (№ для заказа II14525 или II32868).

Завернуть на место резьбовую втулку (16), вращая переходник (61) регулятора (23) против часовой стрелки, см. п. 5.2.

На посадочном месте гофрированного упора (указано стрелкой Х на рисунке) не должно быть грязи и смазки.

Надеть до упора новую втулку, работающую без смазки, (161) на торцевой выступ резьбовой втулки (16).

Надеть упор с гофрированным пыльником (13) на втулку (161).

Установить инструмент для запрессовки (В) с короткой резьбой (Т32) по центру гофрированного пыльника (13) и с его помощью напрессовать пыльник.

Перевернуть инструмент для запрессовки (В) и запрессовать упор (13), воздействуя на него резьбовой частью приспособления (Т32).

Упор (13) после установки на резьбовую втулку должен иметь возможность вращения в обоих направлениях.
При снятой подвижной скобе:

Нанести на резьбу втулки (16) белую консистентную смазку (№ для заказа II14525 или II32868).

Завернуть на место резьбовую втулку (16), вращая переходник (61) регулятора (23) против часовой стрелки, см. п. 5.2.

На посадочном месте гофрированного упора (указано стрелкой X на рисунке) не должно быть грязи и смазки.

Надеть до упора новую втулку, работющую без смазки, (161) на торцевой выступ резьбовой втулки (16).

Надеть упор с гофрированным пыльником (13) на втулку (161).

Установить инструмент для запрессовки (В) с длинной резьбой (Т31+Т32) по центру гофрированного пыльника (13) и с его помощью напрессовать пыльник.

Перевернуть инструмент для запрессовки (В) и запрессовать упор (13), воздействуя на него резьбовой частью приспособления (Т31+Т32).

Упор (13) после установки на резьбовую втулку должен иметь возможность вращения в обоих направлениях.
8 Замена подвижной скобы

Для облегчения операций сборки-разборки, каждое приспособление имеет свой идентификационный номер. Для установки крышки (10) пользуйтесь приспособлением для запрессовки (Н) (№ заказа К002255).

8.1 Снятие подвижной скобы с суппорта

Снять тормозные колодки (см. п. 6.1).
Снять пневмокамеру или тормозной цилиндр (см. п. 12.1...12.3).
Отсоединить кабель потенциометра (при наличии).

Примечание:
В зависимости от пространства, требуемого для свободного доступа, можно либо снять подвижную скобу с суппорта тормозного механизма (см. указания изготовителя транспортного средства), либо не снимать.
Проткнуть крышку (10) подходящим инструментом, например, отверткой.
При этом крышка (10) может сдвинуться внутрь.
Снять крышку (10).

ВНИМАНИЕ!
Крышку (10) протыкать, по возможности, ближе к середине. Не следует вставлять рычаг между краем отверстия подвижной скобы и крышкой (10), поскольку при этом можно повредить подвижную скобу.
Перед отворачиванием винтов с цилиндрическими головками (39) и (40) зафиксировать скобу (1) во избежание ее падения.

Вывернуть винты с цилиндрическими головками (39) и (40).

ВНИМАНИЕ!
Во избежание травм следует браться только за наружные части скобы (1). Пальцы рук ни в коем случае не должны находиться между скобой (1) и суппортом (2). Это опасно!
Ни в коем случае не опираться рычагом на зажимную скобу тормозной колодки (11), поскольку в этом случае возможно повреждение зажимной скобы.

ВНИМАНИЕ!
Запрещается разбирать подвижную скобу. Ремонт подвижной скобы производится только ее заменой в сборе.

Снять тормозную скобу (1) с суппорта (2).
8.2 Установка подвижной скобы

Выбор скобы для замены производится по номеру, указанному на фирменной табличке – стрелка А на рисунке (см. п. 2.1).

Перед установкой цилиндров необходимо удалить пластмассовые крышки или клейкую ленту с привалочных поверхностей новой скобы – стрелки Б и С на рисунке.

Примечание:
Подвижная скоба, поставляемая в качестве запасной части, комплектуется всеми уплотнительными и направляющими элементами, но без тормозных колодок и суппорта. Если сменная подвижная скоба оснащена потенциометром, его разъем должен быть заглушен согласно инструкции изготовителя.

ВНИМАНИЕ!
Во избежание травм следует браться только за наружные части скобы (1). Пальцы рук ни в коем случае не должны находиться между скобой (1) и суппортом (2). Это опасно! Ни в коем случае не опираться рычагом на зажимную скобу тормозной колодки (11), поскольку в этом случае возможно повреждение зажимной скобы.

ВНИМАНИЕ!
Направляющие втулки (4) и (5), а также винты с цилиндрическими головками (39) и (40) являются высоконагруженными деталями. Их необходимо при каждом снятии подвижной скобы с суппорта заменять новыми!

Нанести смазку белого цвета (№ заказа II14525 или II32868).
Вставить направляющие втулки (4) и (5).
Гофрированные пыльники (9) заправить в канавки втулок (на рисунке указаны стрелкой).
Обоймами (58) зафиксировать гофрированные пыльники (9) в канавках направляющих втулок (4) и (5).
Установить подвижную скобу (1) на суппорт (2).
Болты (39) и (40) завернуть с моментом 180 Нм, после чего дотянуть на 90° (допускается применять только новые болты).

ВНИМАНИЕ!
На резьбе болтов и отверстий под них не должно быть смазочных материалов, средств для улучшения скольжения и контрьячих составов.

Убедиться в возможности небольшого перемещения подвижной скобы.
Проверить крепление гофрированных пыльников (9) (на рисунке указаны стрелкой) с помощью обойм (58) на направляющих втулках (4) и (5).
Проверить механизм автоматической регулировки зазора (см. п. 5.2).
Убедиться в отсутствии смазки на посадочном месте крышки (10).
При установке крышки (10) следить, чтобы гофрированные пыльники (9) находились в сжатом состоянии. Это необходимо для предотвращения проникновения воздуха.
С помощью приспособления (Н) (№ заказа К002255) и молотка запрессовать крышку (10) в отверстие скобы.

Установить тормозные колодки (см. п. 6.2).

Установить мембранную тормозную камеру или комбинированный тормозной цилиндр (см. п. 12.2 или п. 12.4).

Установка при снятых подвижной скобе (1) и суппорте (2)
Убедиться в возможности небольшого перемещения подвижной скобы.
С помощью подходящего зажимного устройства (например, тисков) подвижную скобу (1) поджать относительно суппорта (2), насколько возможно, как показано на рисунке.
Гофрированные пыльники (9) должны быть в сжатом состоянии во избежание доступа воздуха.
Теперь можно установить крышки, как описано выше.
При последующей установке тормозного механизма на мост руководствоваться инструкциями изготовителя транспортного средства.
Установить тормозные колодки (см. п. 6.2).
Установить мембранную тормозную камеру или комбинированный тормозной цилиндр (см. п. 12.2 или п. 12.4).
9 Замена гофрированных пыльников (9)

Чтобы облегчить сборку приспособления из компонентов, на каждом из них нанесены идентификационные номера.

Для установки гофрированных пыльников (9) применяйте приспособление (С) (№ заказа К002254).

Снять подвижную скобу (см. п. 8.1).
Снять обоймы (58).
Вынуть направляющие втулки (4) и (5).
Снять с них гофрированные пыльники (9) с помощью отвертки.

ВНИМАНИЕ!
Посадочные места гофрированных пыльников (9) в скобе не должны иметь повреждений (показаны стрелкой А на рисунке справа).

На посадочных местах пыльников на направляющих втулках (4) и (5), а также на подвижной скобе не должно быть следов грязи и смазки.

Проверить сопрягаемые поверхности деталей на отсутствие следов коррозии – поверхности показаны стрелкой А на рисунке справа.

Проверить латунную втулку (7) и направляющую гильзу (6) на отсутствие коррозии, загрязнений и повреждений. При необходимости, заменить детали (см. п. 10).

Вставить новый гофрированный пыльник (9) во втулку приспособления (С) (№ заказа К002254) и смонтировать приспособление, как показано на рисунке справа.

При этом следить, чтобы гофр находился внутри втулки приспособления – см. рисунок справа.

Втулку приспособления (С) с гофрированным пыльником (9) вставить в отверстие и затянуть от руки.

Затем дотянуть с максимальным моментом 8 Нм.
Примечание:
Вытянув гофрированный пыльник (9), убедиться в его правильной посадке (см. рисунок справа).

На латунную втулку (7) и направляющую гильзу (6) нанести белую смазку (№ заказа II14525 или II32868).
Установить направляющие втулки (4) и (5).
Обоймами (58) зафиксировать гофрированные пыльники (9) в канавках направляющих втулок (4) и (5).
Установить подвижную скобу (1) на суппорт (2), см. п. 8.2.
10 Ремонт втулок подвижной скобы

Чтобы облегчить сборку приспособления из компонентов, на каждом из них нанесены идентификационные номера.

Для снятия и установки латунной втулки (7) и направляющей гильзы (6) пользуйтесь монтажно-демонтажным приспособлением (D) (№ заказа K002256) и приспособлением (F) (№ заказа K002253) для зачеканки латунной гильзы (7).

Снять подвижную скобу (см. п. 8.1).

Снять направляющие втулки (4) и (5), а также гофрированные пыльники (9), см. п. 9.

10.1 Замена латунной втулки (7)

10.1.1 Выпрессовка латунной втулки (7)

Очистить упорную поверхность для приспособления (указана стрелкой X на рисунке) и посадочную поверхность гофрированного пыльника (указана стрелкой A), а также латунную втулку (7).

Установить комбинированное приспособление для выпрессовки латунной втулки (7).

Примечание:

Убедиться, что латунная гайка (Т34) упирается в латунную втулку (7).

Стакан (Т33) должен без перекоса упираться в скобу (упорная поверхность указана стрелкой X).

ВНИМАНИЕ!

Посадочные места гофрированных пыльников (9) в подвижной скобе не должны иметь повреждений (показан стрелкой A на рисунке).

Извлечь латунную втулку, вращая болт приспособления (T20).

10.1.2 Установка латунной втулки (7)

Латунную гильзу (7) собрать с приспособлением (D) (см. рис. внизу), установить на место и вручную слегка вдвинуть гильзу в отверстие.

Удерживая накидным ключом болт (T20), другим ключом, вращая шестигранную гайку (T34), запрессовать латунную втулку до упора.

Проставка (T36) передает усилие в осевом направлении и исключает повреждение при вращении гайки латунной втулки (7).

ВНИМАНИЕ!

Посадочные места под гофрированные пыльники (9) в подвижной скобе не должны иметь повреждений (указаны на рисунке стрелкой A).
Зачеканка латунной гильзы (7) для ее фиксации от продольного перемещения в подвижной скобе (1) (указана стрелкой В на рисунке). Шестигранную гайку приспособления (F) ввернуть примерно на 20 мм, см. размер Х на рисунке справа. Затем приспособление (F) (№ заказа K002253) ввести с наружной стороны внутрь латунной гильзы и завернуть шестигранную гайку до упора.
Снова ввернуть шестигранную гайку на 20 мм, повернуть приспособление (F) примерно на 60° и повторить процесс зачеканки.
Осмотреть рабочую поверхность латунной втулки (7). При необходимости, удалить заусенцы.
Нанести на латунную втулку белую консистентную смазку (№ заказа II14525 или II32868).

10.2 Замена направляющей гильзы (6)

10.2.1 Выпрессовка направляющей гильзы (6)
Очистить место установки тормозных колодок и упорную поверхность приспособления (показаны на рисунке стрелкой Х).
Установить монтажно-демонтажное приспособление (D) (№ заказа K002256), как показано на рисунке справа. Гайку (Т34) слегка затянуть от руки. При этом убедиться, что гайка установлена со стороны направляющей гильзы (6).

ВНИМАНИЕ!
Посадочные места гофрированных пыльников (9) в подвижной скобе не должны иметь повреждений (указанны стрелкой А на рисунке).

Удерживая накидным ключом гайку (Т34), другим ключом вращать болт приспособления.

10.2.2 Запрессовка направляющей гильзы (6)
Очистить отверстие, проверить его на отсутствие коррозии; при необходимости обработать соответствующим антикоррозионным лаком, например цинкосодержащим.
С помощью приспособления (D) (см. рисунок внизу) установить направляющую гильзу (6) и от руки слегка вдвинуть в отверстие. Проставка (Т36) должна быть установлена со стороны направляющей гильзы (6).

ВНИМАНИЕ!
Посадочные места гофрированных пыльников (9) в подвижной скобе не должны иметь повреждений (указанны стрелкой А на рисунке).

Удерживая накидным ключом болт приспособления (Т20) и вращая другим ключом шестигранную гайку (Т34), запрессовать направляющую гильзу до упора.
11 Замена суппорта

При необходимости, снять подвижную скобу (см. п. 8.1).

ВНИМАНИЕ!
Зафиксировать суппорт от падения!

Вывернуть болты крепления и снять суппорт (2) с моста, при необходимости, в сборе с подвижной скобой.

Примечание:
Ни в коем случае не опираться рычагом на зажимную скобу тормозной колодки (11), поскольку в этом случае возможно повреждение зажимной скобы.

Очистить привалочную поверхность моста.
Закрепить новый суппорт с помощью новых крепежных болтов, поставляемых изготовителем транспортного средства (болты не входят в комплект запасных частей фирмы KNORR).
При необходимости, установить на место подвижную скобу (см. п. 8.2).
12 Замена тормозного цилиндра

12.1 Снятие мембранной тормозной камеры

Отвернуть воздушный штуцер от тормозной камеры (18/2) (предварительно необходимо сбросить давление в пневмосистеме).

ВНИМАНИЕ!

Открутить шестигранные гайки крепления мембранной тормозной камеры (18/2). Гайки повторному применению не подлежат (указаны стрелкой В на рисунке).

Снять тормозную камеру (18/2).

12.2 Установка тормозной камеры

Примечание:

У новой тормозной камеры (18/2) следует удалить из отверстия, расположенного **внизу**, резиновую заглушку (указана стрелкой А на рисунке), тем самым удалив воздух из вторичной камеры.

Все остальные отверстия могут быть заглущены (при установке руководствоваться инструкциями изготовителя транспортного средства)!

На сопрягаемых поверхностях (указаны стрелкой С на рисунке справа) не должно быть следов грязи и коррозии.

Перед установкой новой тормозной камеры смазать сферическую поверхность рычага (19) и посадочную поверхность **белой** консистентной смазкой (№ для заказа II14525 и II32868).

Проверить плоскости на чистоту и отсутствие неровностей, при необходимости, зачистить.

В уплотнении, а также в отсеке толкателя мембранной камеры (см. рисунок рядом справа) не должно быть грязи и влаги.

Если уплотнение выступает над поверхностью менее чем на 3 мм, то тормозной цилиндр следует заменить.

ВНИМАНИЕ!

Запрещается применять смазки, содержащие сульфит молибдена! Допускается применять только те пневматические тормозные камеры, которые допущены изготовителем транспортного средства.

Установить на место мембранную камеру.

Чтобы исключить перекос мембранной камеры при установке, новые шестигранные гайки (самоконтрящиеся, соответствующие EN ISO 10513) следует заворачивать соответствующим ключом попеременно.

Окончательно затянуть гайки с моментом 180-30 Нм.

Присоединить к камере тормозной шланг, при этом необходимо следить за тем, чтобы шланг не был перекручен и не терся бы о какие-либо элементы!

Проверить пневматическое подсоединение на герметичность.

ВНИМАНИЕ!

Проверить функционирование рабочей тормозной системы!
12.3 Снятие комбинированного тормозного цилиндра

ВНИМАНИЕ!
Перед снятием комбинированного тормозного цилиндра, необходимо зафиксировать транспортное средство во избежание его самопроизвольного перемещения.

Вывернуть винт пружинного аккумулятора аварийного растормаживания (показан стрелкой D на рисунке), прилагая крутящий момент не более 35 Нм.

Привести в действие стояночную тормозную систему.

Отсоединить штуцер от комбинированного тормозного цилиндра (18/1) (предварительно необходимо сбросить давление в пневмосистеме).

ВНИМАНИЕ!
Открутить шестигранные гайки крепления мембранной тормозной камеры (18/2). Гайки повторному применению не подлежат (указаны стрелкой B на рисунке).

Снять комбинированный цилиндр (18/1).

12.4 Установка комбинированного цилиндра

Примечание:
У нового комбинированного тормозного цилиндра (18/1) следует удалить из отверстия, расположенного внизу, резиновую заглушку (указана стрелкой А на рисунке), тем самым удалить воздух из вторичной камеры.

Все остальные отверстия могут быть заглушены (при установке руководствоваться инструкциями изготовителя транспортного средства)!

Перед установкой новой тормозной камеры смазать сферическую поверхность рычага (19) и посадочную поверхность белой консистентной смазкой (№ для заказа II14525 и II32868).

Проверить фланцы на чистоту и отсутствие неровностей, при необходимости, зачистить.

В уплотнении, а также в отсеке толкателя мембранной камеры (см. рисунок справа), не должно быть грязи и влаги.

Если уплотнение выступает над поверхностью менее чем на 3 мм, то комбинированный тормозной цилиндр следует заменить.

ВНИМАНИЕ!
Запрещается применять смазки, содержащие сульфит молибдена! Допускается применять только те комбинированные тормозные цилинды, которые допущены изготовителем транспортного средства. Необходимо соблюдать моменты затяжки.

Чтобы исключить перекос мембранной камеры при установке, новые шестигранные гайки (самоконтрящиеся, соответствующие EN ISO 10513) следует заворачивать соответствующим ключом попеременно.

Окончательно затянуть гайки с моментом 180±30 Нм.

Присоединить к камере тормозной шланг, при этом необходимо следить за тем, чтобы шланг не был перекручен и не терся бы о какие-либо элементы!

Проверить пневматическое подсоединение на герметичность.

Завернуть винт пружинного аккумулятора аварийного растормаживания с моментом затяжки не более 70 Нм.

ВНИМАНИЕ!
Проверить функционирование рабочей и стояночной тормозных систем!